\(\int (d+e x)^{3/2} (a d e+(c d^2+a e^2) x+c d e x^2) \, dx\) [1976]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 43 \[ \int (d+e x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right ) \, dx=\frac {2}{7} \left (a-\frac {c d^2}{e^2}\right ) (d+e x)^{7/2}+\frac {2 c d (d+e x)^{9/2}}{9 e^2} \]

[Out]

2/7*(a-c*d^2/e^2)*(e*x+d)^(7/2)+2/9*c*d*(e*x+d)^(9/2)/e^2

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {640, 45} \[ \int (d+e x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right ) \, dx=\frac {2}{7} (d+e x)^{7/2} \left (a-\frac {c d^2}{e^2}\right )+\frac {2 c d (d+e x)^{9/2}}{9 e^2} \]

[In]

Int[(d + e*x)^(3/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2),x]

[Out]

(2*(a - (c*d^2)/e^2)*(d + e*x)^(7/2))/7 + (2*c*d*(d + e*x)^(9/2))/(9*e^2)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 640

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \int (a e+c d x) (d+e x)^{5/2} \, dx \\ & = \int \left (\frac {\left (-c d^2+a e^2\right ) (d+e x)^{5/2}}{e}+\frac {c d (d+e x)^{7/2}}{e}\right ) \, dx \\ & = \frac {2}{7} \left (a-\frac {c d^2}{e^2}\right ) (d+e x)^{7/2}+\frac {2 c d (d+e x)^{9/2}}{9 e^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.79 \[ \int (d+e x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right ) \, dx=\frac {2 (d+e x)^{7/2} \left (9 a e^2+c d (-2 d+7 e x)\right )}{63 e^2} \]

[In]

Integrate[(d + e*x)^(3/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2),x]

[Out]

(2*(d + e*x)^(7/2)*(9*a*e^2 + c*d*(-2*d + 7*e*x)))/(63*e^2)

Maple [A] (verified)

Time = 2.46 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.74

method result size
gosper \(\frac {2 \left (e x +d \right )^{\frac {7}{2}} \left (7 x c d e +9 e^{2} a -2 c \,d^{2}\right )}{63 e^{2}}\) \(32\)
pseudoelliptic \(\frac {2 \left (e x +d \right )^{\frac {7}{2}} \left (7 x c d e +9 e^{2} a -2 c \,d^{2}\right )}{63 e^{2}}\) \(32\)
derivativedivides \(\frac {\frac {2 c d \left (e x +d \right )^{\frac {9}{2}}}{9}+\frac {2 \left (e^{2} a -c \,d^{2}\right ) \left (e x +d \right )^{\frac {7}{2}}}{7}}{e^{2}}\) \(39\)
default \(\frac {\frac {2 c d \left (e x +d \right )^{\frac {9}{2}}}{9}+\frac {2 \left (e^{2} a -c \,d^{2}\right ) \left (e x +d \right )^{\frac {7}{2}}}{7}}{e^{2}}\) \(39\)
trager \(\frac {2 \left (7 c d \,e^{4} x^{4}+9 a \,e^{5} x^{3}+19 d^{2} e^{3} c \,x^{3}+27 a d \,e^{4} x^{2}+15 c \,d^{3} e^{2} x^{2}+27 a \,e^{3} d^{2} x +c \,d^{4} e x +9 a \,d^{3} e^{2}-2 c \,d^{5}\right ) \sqrt {e x +d}}{63 e^{2}}\) \(99\)
risch \(\frac {2 \left (7 c d \,e^{4} x^{4}+9 a \,e^{5} x^{3}+19 d^{2} e^{3} c \,x^{3}+27 a d \,e^{4} x^{2}+15 c \,d^{3} e^{2} x^{2}+27 a \,e^{3} d^{2} x +c \,d^{4} e x +9 a \,d^{3} e^{2}-2 c \,d^{5}\right ) \sqrt {e x +d}}{63 e^{2}}\) \(99\)

[In]

int((e*x+d)^(3/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x,method=_RETURNVERBOSE)

[Out]

2/63*(e*x+d)^(7/2)*(7*c*d*e*x+9*a*e^2-2*c*d^2)/e^2

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 98 vs. \(2 (35) = 70\).

Time = 0.36 (sec) , antiderivative size = 98, normalized size of antiderivative = 2.28 \[ \int (d+e x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right ) \, dx=\frac {2 \, {\left (7 \, c d e^{4} x^{4} - 2 \, c d^{5} + 9 \, a d^{3} e^{2} + {\left (19 \, c d^{2} e^{3} + 9 \, a e^{5}\right )} x^{3} + 3 \, {\left (5 \, c d^{3} e^{2} + 9 \, a d e^{4}\right )} x^{2} + {\left (c d^{4} e + 27 \, a d^{2} e^{3}\right )} x\right )} \sqrt {e x + d}}{63 \, e^{2}} \]

[In]

integrate((e*x+d)^(3/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="fricas")

[Out]

2/63*(7*c*d*e^4*x^4 - 2*c*d^5 + 9*a*d^3*e^2 + (19*c*d^2*e^3 + 9*a*e^5)*x^3 + 3*(5*c*d^3*e^2 + 9*a*d*e^4)*x^2 +
 (c*d^4*e + 27*a*d^2*e^3)*x)*sqrt(e*x + d)/e^2

Sympy [A] (verification not implemented)

Time = 0.88 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.23 \[ \int (d+e x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right ) \, dx=\begin {cases} \frac {2 \left (\frac {c d \left (d + e x\right )^{\frac {9}{2}}}{9 e} + \frac {\left (d + e x\right )^{\frac {7}{2}} \left (a e^{2} - c d^{2}\right )}{7 e}\right )}{e} & \text {for}\: e \neq 0 \\\frac {c d^{\frac {7}{2}} x^{2}}{2} & \text {otherwise} \end {cases} \]

[In]

integrate((e*x+d)**(3/2)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2),x)

[Out]

Piecewise((2*(c*d*(d + e*x)**(9/2)/(9*e) + (d + e*x)**(7/2)*(a*e**2 - c*d**2)/(7*e))/e, Ne(e, 0)), (c*d**(7/2)
*x**2/2, True))

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.88 \[ \int (d+e x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right ) \, dx=\frac {2 \, {\left (7 \, {\left (e x + d\right )}^{\frac {9}{2}} c d - 9 \, {\left (c d^{2} - a e^{2}\right )} {\left (e x + d\right )}^{\frac {7}{2}}\right )}}{63 \, e^{2}} \]

[In]

integrate((e*x+d)^(3/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="maxima")

[Out]

2/63*(7*(e*x + d)^(9/2)*c*d - 9*(c*d^2 - a*e^2)*(e*x + d)^(7/2))/e^2

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 313 vs. \(2 (35) = 70\).

Time = 0.28 (sec) , antiderivative size = 313, normalized size of antiderivative = 7.28 \[ \int (d+e x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right ) \, dx=\frac {2 \, {\left (315 \, \sqrt {e x + d} a d^{3} e + \frac {105 \, {\left ({\left (e x + d\right )}^{\frac {3}{2}} - 3 \, \sqrt {e x + d} d\right )} c d^{4}}{e} + 315 \, {\left ({\left (e x + d\right )}^{\frac {3}{2}} - 3 \, \sqrt {e x + d} d\right )} a d^{2} e + \frac {63 \, {\left (3 \, {\left (e x + d\right )}^{\frac {5}{2}} - 10 \, {\left (e x + d\right )}^{\frac {3}{2}} d + 15 \, \sqrt {e x + d} d^{2}\right )} c d^{3}}{e} + 63 \, {\left (3 \, {\left (e x + d\right )}^{\frac {5}{2}} - 10 \, {\left (e x + d\right )}^{\frac {3}{2}} d + 15 \, \sqrt {e x + d} d^{2}\right )} a d e + \frac {27 \, {\left (5 \, {\left (e x + d\right )}^{\frac {7}{2}} - 21 \, {\left (e x + d\right )}^{\frac {5}{2}} d + 35 \, {\left (e x + d\right )}^{\frac {3}{2}} d^{2} - 35 \, \sqrt {e x + d} d^{3}\right )} c d^{2}}{e} + 9 \, {\left (5 \, {\left (e x + d\right )}^{\frac {7}{2}} - 21 \, {\left (e x + d\right )}^{\frac {5}{2}} d + 35 \, {\left (e x + d\right )}^{\frac {3}{2}} d^{2} - 35 \, \sqrt {e x + d} d^{3}\right )} a e + \frac {{\left (35 \, {\left (e x + d\right )}^{\frac {9}{2}} - 180 \, {\left (e x + d\right )}^{\frac {7}{2}} d + 378 \, {\left (e x + d\right )}^{\frac {5}{2}} d^{2} - 420 \, {\left (e x + d\right )}^{\frac {3}{2}} d^{3} + 315 \, \sqrt {e x + d} d^{4}\right )} c d}{e}\right )}}{315 \, e} \]

[In]

integrate((e*x+d)^(3/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="giac")

[Out]

2/315*(315*sqrt(e*x + d)*a*d^3*e + 105*((e*x + d)^(3/2) - 3*sqrt(e*x + d)*d)*c*d^4/e + 315*((e*x + d)^(3/2) -
3*sqrt(e*x + d)*d)*a*d^2*e + 63*(3*(e*x + d)^(5/2) - 10*(e*x + d)^(3/2)*d + 15*sqrt(e*x + d)*d^2)*c*d^3/e + 63
*(3*(e*x + d)^(5/2) - 10*(e*x + d)^(3/2)*d + 15*sqrt(e*x + d)*d^2)*a*d*e + 27*(5*(e*x + d)^(7/2) - 21*(e*x + d
)^(5/2)*d + 35*(e*x + d)^(3/2)*d^2 - 35*sqrt(e*x + d)*d^3)*c*d^2/e + 9*(5*(e*x + d)^(7/2) - 21*(e*x + d)^(5/2)
*d + 35*(e*x + d)^(3/2)*d^2 - 35*sqrt(e*x + d)*d^3)*a*e + (35*(e*x + d)^(9/2) - 180*(e*x + d)^(7/2)*d + 378*(e
*x + d)^(5/2)*d^2 - 420*(e*x + d)^(3/2)*d^3 + 315*sqrt(e*x + d)*d^4)*c*d/e)/e

Mupad [B] (verification not implemented)

Time = 9.64 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.79 \[ \int (d+e x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right ) \, dx=\frac {2\,{\left (d+e\,x\right )}^{7/2}\,\left (9\,a\,e^2-9\,c\,d^2+7\,c\,d\,\left (d+e\,x\right )\right )}{63\,e^2} \]

[In]

int((d + e*x)^(3/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2),x)

[Out]

(2*(d + e*x)^(7/2)*(9*a*e^2 - 9*c*d^2 + 7*c*d*(d + e*x)))/(63*e^2)